If it's not what You are looking for type in the equation solver your own equation and let us solve it.
u^2+6u-24=0
a = 1; b = 6; c = -24;
Δ = b2-4ac
Δ = 62-4·1·(-24)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{33}}{2*1}=\frac{-6-2\sqrt{33}}{2} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{33}}{2*1}=\frac{-6+2\sqrt{33}}{2} $
| 23=5x-8 | | 180=12x^2+40x | | 12x^2+40x=180 | | g/0,21=3g/1.0+2 | | g/0,21=3g/1.05=2 | | 15((17-n)÷6)^2-n(n-1)÷2=50 | | 7=x^2+x | | 8m-3=13 | | h+4/6=3 | | 4/3y-y=15 | | 27^x+3^2-3x=10 | | Y=-(x-1)(x-7) | | 4.9t=400 | | 0.1=0.5t | | 2*2/3y-y=15 | | 5(b-9)=15 | | 8=2x^2+x-6 | | 5(x+2)+3(x+4)=31 | | 5((x+2)+3(x+4)=31 | | b-3=9(-2) | | 14=2x²+x | | 4t-6=-t+39 | | (16x^2-2x+8)/(x^2+5x+6)=0 | | xx36=360 | | 2x-330=x | | 3(4x-5)=3x+4 | | X=10p-20-p^2 | | 3x2-16x-35=0 | | 5(x-2)=8x+2 | | x(2+x)=624 | | x2+x-42=0 | | x-2=2x-10 |